Missing Data Problems in Machine Learning: Outline and Contributions - Robin Parker - Bøger - VDM Verlag Dr. Müller - 9783639212280 - 7. juni 2010
Ved uoverensstemmelse mellem cover og titel gælder titel

Missing Data Problems in Machine Learning: Outline and Contributions

Robin Parker

Pris
CA$ 131,86

Bestilles fra fjernlager

Forventes klar til forsendelse 16. - 23. jul.
Tilføj til din iMusic ønskeseddel
Eller

Missing Data Problems in Machine Learning: Outline and Contributions

Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis.

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 7. juni 2010
ISBN13 9783639212280
Forlag VDM Verlag Dr. Müller
Antal sider 168
Mål 225 × 9 × 150 mm   ·   254 g
Sprog Engelsk