Recent Methods from Statistics and Machine Learning for Credit Scoring - Anne Kraus - Bøger - Cuvillier - 9783954047369 - 8. juli 2014
Ved uoverensstemmelse mellem cover og titel gælder titel

Recent Methods from Statistics and Machine Learning for Credit Scoring

Anne Kraus

Pris
DKK 265

Bestilles fra fjernlager

Forventes klar til forsendelse 4. - 10. sep.
Tilføj til din iMusic ønskeseddel
Eller

Recent Methods from Statistics and Machine Learning for Credit Scoring

Credit scoring models are the basis for financial institutions like retail and consumer credit banks. The purpose of the models is to evaluate the likelihood of credit applicants defaulting in order to decide whether to grant them credit. The area under the receiver operating characteristic (ROC) curve (AUC) is one of the most commonly used measures to evaluate predictive performance in credit scoring. The aim of this thesis is to benchmark different methods for building scoring models in order to maximize the AUC. While this measure is used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially introduced as direct optimization criterion.


166 pages

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 8. juli 2014
ISBN13 9783954047369
Forlag Cuvillier
Antal sider 166
Mål 148 × 210 × 9 mm   ·   204 g
Sprog Engelsk  

Vis alle

Mere med Anne Kraus