Many Rational Points - Mathematics and Its Applications - Norman E. Hurt - Bøger - Springer - 9789048164967 - 8. december 2010
Ved uoverensstemmelse mellem cover og titel gælder titel

Many Rational Points - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2004 edition

Norman E. Hurt

Pris
zł 489,90

Bestilles fra fjernlager

Forventes klar til forsendelse 6. - 12. aug.
Tilføj til din iMusic ønskeseddel
Eller

Many Rational Points - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2004 edition

2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex­ tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.


346 pages, biography

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 8. december 2010
ISBN13 9789048164967
Forlag Springer
Antal sider 346
Mål 155 × 235 × 19 mm   ·   517 g
Sprog Engelsk  

Vis alle

Mere med Norman E. Hurt