Uncertainty Quantification Techniques in Statistics - Jong-Min Kim - Bøger - Mdpi AG - 9783039285464 - 3. april 2020
Ved uoverensstemmelse mellem cover og titel gælder titel

Uncertainty Quantification Techniques in Statistics

Jong-Min Kim

Pris
SEK 529

Bestilles fra fjernlager

Forventes klar til forsendelse 21. - 28. aug.
Tilføj til din iMusic ønskeseddel
Eller

Uncertainty Quantification Techniques in Statistics

Uncertainty quantification (UQ) is a mainstream research topic in applied mathematics and statistics. To identify UQ problems, diverse modern techniques for large and complex data analyses have been developed in applied mathematics, computer science, and statistics. This Special Issue of Mathematics (ISSN 2227-7390) includes diverse modern data analysis methods such as skew-reflected-Gompertz information quantifiers with application to sea surface temperature records, the performance of variable selection and classification via a rank-based classifier, two-stage classification with SIS using a new filter ranking method in high throughput data, an estimation of sensitive attribute applying geometric distribution under probability proportional to size sampling, combination of ensembles of regularized regression models with resampling-based lasso feature selection in high dimensional data, robust linear trend test for low-coverage next-generation sequence data controlling for covariates, and comparing groups of decision-making units in efficiency based on semiparametric regression.


128 pages, 18 Illustrations

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 3. april 2020
ISBN13 9783039285464
Forlag Mdpi AG
Antal sider 128
Mål 170 × 244 × 9 mm   ·   285 g
Sprog Engelsk