Theoretical Investigation for the Hard Machining: an Experimental and Theoretical Investigation for the Machining of Hardened Alloy Steels - Tae-hong Lee - Bøger - VDM Verlag Dr. Müller - 9783639010176 - 29. april 2008
Ved uoverensstemmelse mellem cover og titel gælder titel

Theoretical Investigation for the Hard Machining: an Experimental and Theoretical Investigation for the Machining of Hardened Alloy Steels

Tae-hong Lee

Pris
DKK 699

Bestilles fra fjernlager

Forventes klar til forsendelse 8. - 15. sep.
Tilføj til din iMusic ønskeseddel
Eller

Theoretical Investigation for the Hard Machining: an Experimental and Theoretical Investigation for the Machining of Hardened Alloy Steels

The research work in this thesis involves an experimental and theoretical investigation for high speed machining of AISI 4140 medium carbon steels and AISI D2 tool steels which are classified as being difficult to machine materials. An experimental program was carried out to determine the cutting forces, chip formation, the secondary deformation zone thickness and surface roughness at different cutting speeds using a 0.4mm and 0.8mm nose radii ceramic tools and -7? rake angle for annealed (virgin) AISI 4140 and heat treated AISI 4140 steel. Another series of experiments was carried out on the annealed (virgin) and heat treated AISI D2 with 0.4mm, 0.8mm and 1.2mm nose radii CBN (Cubic Boron Nitride) tools under various cutting conditions. A theoretical model is developed by taking into account the flow stress properties of the AISI 4140 (0.44% carbon content) to use with the Oxley Machining approach. To find the flow stress data for AISI D2 tool steel, the Johnson and Cook empirical constitutive equation is used as the constitutive model. In addition, the magnitude of tool radius should be also considered to determine the prediction of cutting performances. To account for the effect of nose radius edge in hard machining, a simplified geometrical method is used to model the parameters for application in the Oxley Model and works for the cutting conditions considered here. These extensions to the Oxley machining theory were verified by experimental results. These results show a good agreement between the Oxley machining theory and hard machining experiment at data. The research work described in this thesis provides useful data for hard machining conditions.

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 29. april 2008
ISBN13 9783639010176
Forlag VDM Verlag Dr. Müller
Antal sider 252
Mål 340 g
Sprog Engelsk