Sparse Representation of High Dimensional Data for Classification: Research and Experiments - Salman Siddiqui - Bøger - VDM Verlag Dr. Müller - 9783639132991 - 5. marts 2009
Ved uoverensstemmelse mellem cover og titel gælder titel

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

Salman Siddiqui

Pris
NOK 709

Bestilles fra fjernlager

Forventes klar til forsendelse 7. - 14. jul.
Tilføj til din iMusic ønskeseddel
Eller

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

In this book you will find the use of sparse Principal Component Analysis (PCA) for representing high dimensional data for classification. Sparse transformation reduces the data volume/dimensionality without loss of critical information, so that it can be processed efficiently and assimilated by a human. We obtained sparse representation of high dimensional dataset using Sparse Principal Component Analysis (SPCA) and Direct formulation of Sparse Principal Component Analysis (DSPCA). Later we performed classification using k Nearest Neighbor (kNN) Method and compared its result with regular PCA. The experiments were performed on hyperspectral data and various datasets obtained from University of California, Irvine (UCI) machine learning dataset repository. The results suggest that sparse data representation is desirable because sparse representation enhances interpretation. It also improves classification performance with certain number of features and in most of the cases classification performance is similar to regular PCA.

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 5. marts 2009
ISBN13 9783639132991
Forlag VDM Verlag Dr. Müller
Antal sider 64
Mål 104 g
Sprog Engelsk