Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis - Tanya Mincheva - Bøger - LAP LAMBERT Academic Publishing - 9783659218828 - 18. marts 2014
Ved uoverensstemmelse mellem cover og titel gælder titel

Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis

Tanya Mincheva

Pris
S$ 37,50

Bestilles fra fjernlager

Forventes klar til forsendelse 5. - 11. aug.
Tilføj til din iMusic ønskeseddel
Eller

Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis

The definition of arithmetic progression is viewed as a generalization of the concept of symmetry sets on the real axis. We use the positive whole numbers. Each finite arithmetic progression we call generalized symmetrical multitude We can write a sequence, the elements of which are multitudes- arithmetic progressions. For these multitudes we define KINEMATICS AND DYNAMICS That interpretation is used to prove the theorem of Goldbach In the second part we consider the Riemann hypothesis by analyzing some helix lines. In third part we have a problem by vector optimization in euclidean metric.

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 18. marts 2014
ISBN13 9783659218828
Forlag LAP LAMBERT Academic Publishing
Antal sider 72
Mål 150 × 4 × 225 mm   ·   125 g
Sprog Tysk  

Vis alle

Mere med Tanya Mincheva