Theory for Strongly Coupled Quantum Dot Cavity Quantum Electrodynamics: Photon Statistics and Phonon Signatures in Quantum Light Emission - Alexander Carmele - Bøger - Südwestdeutscher Verlag für Hochschulsch - 9783838128474 - 13. september 2011
Ved uoverensstemmelse mellem cover og titel gælder titel

Theory for Strongly Coupled Quantum Dot Cavity Quantum Electrodynamics: Photon Statistics and Phonon Signatures in Quantum Light Emission

Alexander Carmele

Pris
DKK 526

Bestilles fra fjernlager

Forventes klar til forsendelse 5. - 11. nov.
Julegaver kan byttes frem til 31. januar
Tilføj til din iMusic ønskeseddel
eller

Theory for Strongly Coupled Quantum Dot Cavity Quantum Electrodynamics: Photon Statistics and Phonon Signatures in Quantum Light Emission

Advances in semiconductor technology constitute a new physical system to investigate quantum optics in a solid state environment: a quantum dot strongly coupled to a single cavity mode. In the strong coupling regime, the electron-photon coupling dominates over dissipation processes and Rabi oscillations occur. This thesis focuses on the theoretical investigation of the strong coupling regime in the single-photon limit, in which few photons interact with a single quantum dot and the combined electron and photon dynamics is strongly correlated. Typical theoretical frameworks rely on factorization approaches, such as the cluster expansion scheme. However, for strongly correlated dynamics, standard factorization schemes fail and new theoretical frameworks become necessary. The work in hand develops two novel methods within the equation of motion approach to solve the complete quantum kinetics without a factorization of the electron-photon interaction, including non-Markovian features, and hereby bridges this gap in the theoretical description of semiconductor quantum optics.

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 13. september 2011
ISBN13 9783838128474
Forlag Südwestdeutscher Verlag für Hochschulsch
Antal sider 140
Mål 150 × 8 × 226 mm   ·   227 g
Sprog Tysk