Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining - Tomas Arredondo - Bøger - LAP Lambert Academic Publishing - 9783838337104 - 21. juni 2010
Ved uoverensstemmelse mellem cover og titel gælder titel

Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining 1st edition

Pris
DKK 590

Bestilles fra fjernlager

Forventes klar til forsendelse 6. - 12. jan. 2026
Julegaver kan byttes frem til 31. januar
Tilføj til din iMusic ønskeseddel
eller

This work refers to studies on information-theoretic (IT) aspects of data-sequence patterns and developing discriminant algorithms that enable distinguishing the features of underlying sequence patterns having characteristic, inherent stochastical attributes. Considered in this research are specific details on information-theoretics and entropy considerations vis-á-vis sequence patterns (having stochastical attributes) such as DNA sequences of molecular biology. Applying information-theoretic concepts (essentially in Shannon?s sense), the following distinct sets of metrics are developed and applied in the algorithms developed for data-sequence pattern-discrimination applications: (i) Divergence or cross-entropy algorithms of Kullback-Leibler type and of general Czizár class; (ii) statistical distance measures; (iii) ratio-metrics; (iv) Fisher type linear-discriminant measure; (v) complexity metric based on information redundancy; and a Fuzzy logic based measure. Relevant algorithms are used to test DNA sequences of human and some bacterial organisms.

Medie Bøger     Paperback Bog   (Bog med blødt omslag og limet ryg)
Udgivet 21. juni 2010
ISBN13 9783838337104
Forlag LAP Lambert Academic Publishing
Antal sider 264
Mål 225 × 15 × 150 mm   ·   411 g
Sprog Tysk